GOLDEN GATE TO IIT SOLUTION TO SAMPLE ENTRANCE TEST

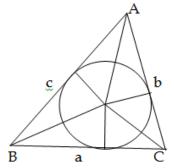
1. The given equation is
$$\frac{xy+1}{y-x} = 3$$
.

Rewriting this equation we get y(x-3) = -3x - 1 which gives $y = \frac{1+3x}{3-x}$. Since *x* and *y* are natural numbers, we have x > 0, y > 0. Hence 3x+1>0. Hence also 3-x>0 and since x is natural, we must have x = 1 or x = 2. Hence for x = 1, y = 2 and for x = 2, y = 7. Hence the answer pairs are (1,2) and (2,7).

- 2. The possible implications are :
 - 1. B divides segment AC in some ratio.
 - 2. Area of $\triangle ABC$ is 0.
 - 3. l(AB)+l(BC)=l(AC)
 - 4. A, B and C can not lie on the same circle.

3.
$$a^x = ab \Rightarrow a^{x-1} = b \dots (1)$$
 and also we
have $b^y = ab \Rightarrow b^{y-1} = a$
 $\Rightarrow b = a^{1/(y-1)} \dots (2)$ Now from (1) and (2)
we get $a^{x-1} = a^{1/(y-1)}$. This means
 $x - 1 = \frac{1}{y-1} \Rightarrow (x-1)(y-1) = 1$
Hence $xy - x - y + 1 = 1 \Rightarrow xy = x + y$

4. Refer to the diagram.



Let the centre of the circle be I. Let the radius of the incircle be *r*. Then the area of the triangle ABC is given by $\Delta - \Delta A IB + \Delta B IC + \Delta C IA$

$$\Delta = \Delta AIB + \Delta BIC + \Delta CIA$$
$$\Delta = \frac{1}{2}rc + \frac{1}{2}ra + \frac{1}{2}rb$$

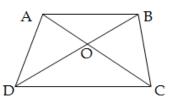
 $=\frac{1}{2}r(a+b+c)$ as required.

5. We have to prove that *x* can not be rational. Let us assume the contrary. i.e. let *x* be rational. Then by definition of a rational number there exist natural

numbers *p* and *q* such that $x = \frac{p}{q}$. Hence

the given equation becomes $2^{p/q} = 7$. Hence we get $2^p = 7^q$. Now for a natural p, 2^p is even while for a natural q, 7^q is odd. Hence we get the contradiction that an even no. = an odd number. Hence x can not be rational.

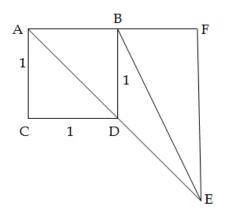
6. Consider the following diagram.



We are given that $\frac{AB}{DC} = \frac{1}{2}$. Also $\angle ABO = \angle CDO$ and $\angle BAO = \angle DCO$. Hence $\triangle AOB \sim \triangle COD$. Hence we have $\frac{AB}{CD} = \frac{AO}{CO} = \frac{BO}{DO} = \frac{1}{2}$. This proves the result. i.e. O is the point of trisection of both the diagonals.

- 7. Given $\sqrt{2}\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)$ = $\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}$ = $\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}$ = $(\sqrt{3}+1)-(\sqrt{3}-1)=2$ which is even.
- 8. Consider the following diagram

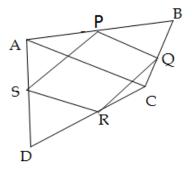
GOLDEN GATE TO IIT SOLUTION TO SAMPLE ENTRANCE TEST



Extend AB to F such that $BF \perp EF$. Then by midpoint theorem in $\triangle AEF$ we get BF = 1, EF = 2. Hence in right angled triangle BEF we get $l(BE) = \sqrt{(l(BF))^2 + (l(EF))^2} = \sqrt{1+4}$ $= \sqrt{5}$

9. The given equation is $3^{2x} - 3^{x+1} - 3^{x-1} + 1 = 0$ which can be written as $(3^x)^2 - 3 \cdot 3^x - \frac{3^x}{3} + 1 = 0$. Now put $3^x = y$. Then the equation becomes $y^2 - 3y - \frac{y}{3} + 1 = 0$ which gives $3y^2 - 10y + 3 = 0$ which is $(3y - 1)(y - 3) = 0 \Rightarrow y = 3, \frac{1}{3}$ which gives $3^x = 3$ or $3^x = 3^{-1}$ which gives $x = \pm 1$

10. Refer to the diagram.



Join AC. In $\triangle ABC$, by midpoint theorem, $PQ \parallel AC$ and $PQ = \frac{1}{2}AC$. Similarly in $\triangle ADC$, $SR \parallel AC$ and

 $SR = \frac{1}{2}AC$. Hence we get SR = PQ and $SR \parallel PQ$. Hence quadrilateral PQRS is a parallelogram.

##